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A ADDITIONAL FABRICATION DETAILS

A.1 Direct-write Grayscale Lithography
In this work, we employ direct-write grayscale lithography using the Heidelberg Instruments DWL 66+ mask
writer to fabricate intricate microstructured patterns with high precision. This advanced lithographic technique
leverages the system’s ability to finely modulate the laser exposure across 1023 discrete grayscale levels. Such fine
resolution in exposure control allows for the accurate modulation of the energy dose imparted to the photoresist,
which is crucial for defining complex topographies.

We utilize AZ® 4562 photoresist, one of the most reliable and versatile positive-tone resists available, widely
recognized for its excellent response to variations in exposure dose. Its high sensitivity and broad dynamic
range make it exceptionally well-suited for grayscale lithography, enabling the formation of smooth, continuous
three-dimensional relief structures directly within the resist layer. These 3D profiles can be generated in a single
exposure step, eliminating the need for physical photomasks or additional processing stages such as reactive ion
etching or resist reflow. The process begins with spin-coating a layer of AZ® 4562, a positive-tone photoresist,
onto a soda-lime glass substrate. The coated sample is then soft-baked on a hot plate at 120 ° C for 3 minutes.
Following a 3-hour rest period to ensure photoresist stability, the design is written using the DWL 66+ mask
writer. Development is carried out using AZ® 726 MIF developer for 25 seconds, carefully calibrated to achieve
the desired depth profile.

A.2 Nanoimprint Lithography
To permanently transfer the patterned photoresist structures into a robust optical material, we employ room-
temperature nanoimprint lithography (NIL) using the Obducat Eitre 3 system. This process does not require
thermal assistance; instead, it relies solely on the application of uniform pressure to achieve conformal contact
between the mold and the imprint material. The initial grayscale structures, fabricated in AZ® 4562 photoresist
on soda-lime glass substrates, serve as high-resolution master molds for the replication process.
The micro- and nanoscale diffractive optical element (DOE) patterns are transferred into OrmoComp, a UV-

curable organic–inorganic hybrid polymer known for its excellent optical clarity, low volumetric shrinkage, and
strong mechanical stability. These properties make OrmoComp particularly well-suited for faithfully replicating
fine surface relief structures at ambient conditions.
During imprinting, a thin layer of uncured OrmoComp is dispensed onto a target Soda-lime substrate, and

the master mold is pressed into the polymer under controlled pressure. Once conformal contact is achieved, the
resist is exposed to UV light through the transparent substrate, initiating photopolymerization and solidifying
the replicated structure. The mold is then released, yielding a high-fidelity replica of the original 3D relief with
minimal deformation or feature loss. This pressure-only NIL approach simplifies processing, reduces thermal
stress, and enables cost-effective fabrication of high-performance micro-optical components.
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B ADDITIONAL IMPLEMENTATION DETAILS

B.1 Neural Lithography Model Architecture
We construct a small yet effective fully-convolutional neural network as the neural lithography model to learn the
mapping from design layouts (on a 1 µm-spacing grid) to their corresponding high-resolution AFMmeasurements,
amounting to a super-resolution task. For designs with coarser features (such as 2 µm), we first perform nearest-
upsampling from the original grid to the 1 µm-spacing grid, and then apply the neural network to get final
high-resolution predictions. The detailed architecture is specified in Table S1.
The neural lithography model consists of a convolutional neural network (CNN) with 𝑁 residual blocks (set

to 2 by default), each containing a convolutional layer followed by a ReLU activation function. These blocks
extract hierarchical feature representations from the input design layout. To generate a high-resolution output,
the network employs a projection layer followed by a PixelShuffle operation for upsampling. Skip connections,
including a global skip connection that adds the input to the projection output, are used to stabilize gradient flow
and mitigate the vanishing gradient problem. This is particularly important for fabrication-aware optimization,
where gradients must propagate effectively back to the input design layout to enable precise adjustments.

For very large-scale designs, we adapt the default architecture by reducing the number of blocks 𝑁 and the
intermediate channel dimension 𝐹𝑖 to optimally balance prediction precision with computational efficiency. The
final upsampling to the target grid is achieved with a defined ratio 𝑟 .

Table S1: Architecture of the Neural Lithography Model. The model is a convolutional neural network
(CNN) with 𝑁 residual blocks and skip connections, designed for feature extraction and upscaling. Here, 𝑟
denotes the upsample ratio. By default, we set 𝐹0 = 𝐹𝑖 = 100 and 𝑁 = 2. For very large-scale designs (e.g.,
ultra-high-definition 2-D holograms, see Fig. 11), fewer blocks and a lower channel dimension are used to
balance precision and computational efficiency.

Component Operation Output Shape Details
Input – (𝐵,𝐻,𝑊 , 1) Batch, Height, Width, Channels

Initial Feature Extraction Conv + ReLU (𝐵,𝐻,𝑊 , 𝐹0) Kernel: 3 × 3, Features: 𝐹0

Residual Blocks (𝑁 blocks) Conv + ReLU
Add (𝐵,𝐻,𝑊 , 𝐹𝑖 )

Kernel: 3 × 3
Residual connection

Projection Conv (𝐵,𝐻,𝑊 , 𝑟2) Kernel: 1 × 1
Global Skip Connection Add (𝐵,𝐻,𝑊 , 𝑟2) Adds the initial input

Upscaling PixelShuffle (𝐵,𝐻 · 𝑟,𝑊 · 𝑟, 1) Rearranges channels to spatial dimensions
Output – (𝐵,𝐻 · 𝑟,𝑊 · 𝑟, 1) Final high-resolution output

B.2 Hologram Reconstruction Loss
To optimize a DOE for generating a 2-D hologram, we minimize a scale-invariant mean square error loss with an
additional energy regularization. Let

𝐼 ∈ R𝐻×𝑊

denote the predicted hologram intensity with spatial resolution 𝐻 ×𝑊 . Let

𝑇 ∈ R𝐻×𝑊

be the target hologram pattern, and let 𝜖 > 0 be a small constant for numerical stability. The total loss is

Lp = Lsi−mse + 𝛽Lenergy,

where 𝛽 > 0 is a weighting factor for the energy regularization term.
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1. Scale-Invariant MSE Loss. The scale-invariant mean square error (si-MSE) loss minimizes the difference
between the predicted hologram intensity 𝐼 and the target 𝑇 , allowing for an optimal scalar scaling factor 𝛼 . The
optimal scale is computed as

𝛼 =

∑𝐻
ℎ=1

∑𝑊
𝑤=1 𝐼ℎ,𝑤𝑇ℎ,𝑤∑𝐻

ℎ=1
∑𝑊

𝑤=1 𝐼
2
ℎ,𝑤

+ 𝜖
.

The si-MSE loss is then defined as

Lsi−mse =

∑𝐻
ℎ=1

∑𝑊
𝑤=1

(
𝛼𝐼ℎ,𝑤 −𝑇ℎ,𝑤

)2∑𝐻
ℎ=1

∑𝑊
𝑤=1𝑇

2
ℎ,𝑤

+ 𝜖
.

This loss normalizes the MSE by the target’s energy to ensure scale invariance.

2. Energy Loss. To prevent trivial solutions and encourage the total intensity to approach unity, we define the
energy loss as

𝐼 =
1

𝐻𝑊

𝐻∑︁
ℎ=1

𝑊∑︁
𝑤=1

𝐼ℎ,𝑤, Lenergy = 1 − 𝐼 + 𝜖.

This term penalizes deviations of the average intensity 𝐼 from 1, with 𝜖 ensuring numerical stability.

B.3 Broadband Imaging PSF Loss
To optimize a DOE for broadband imaging, we combine several complementary loss terms. Let

𝐼 ∈ R𝐶×𝐻×𝑊

denote the predicted PSF intensities for 𝐶 spectral channels and spatial resolution 𝐻 ×𝑊 . Let

𝑇 ∈ R𝐶×𝐻×𝑊

be the target PSF pattern, and let 𝜖 > 0 be a small constant for numerical stability. We write the image center
pixel as (ℎ0,𝑤0). The total loss is

Ltotal = Lpsf + Lfocus + Lcst + Lenergy

1. PSF Matching Loss. This term encourages the predicted PSF to align with the target distribution 𝑇 . We take a
log-barrier over the spatial inner product to penalize mismatches:

Lpsf = − 1
𝐶

𝐶∑︁
𝑐=1

ln
( 𝐻∑︁
ℎ=1

𝑊∑︁
𝑤=1

𝐼𝑐,ℎ,𝑤 𝑇𝑐,ℎ,𝑤 + 𝜖

)
.

By summing over all pixels (ℎ,𝑤) and channels 𝑐 , this loss drives high correlation between predicted and target
PSF intensities.

2. Focus (Center-Energy) Loss. To ensure that most energy is concentrated at the PSF center, we maximize the
mean central pixel intensity:

Lfocus = − ln
( 1
𝐶

𝐶∑︁
𝑐=1

𝐼𝑐,ℎ0,𝑤0 + 𝜖

)
.

A larger central value reduces this term, encouraging a sharp focal peak.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.



n • 5

3. Consistency Loss. Real PSFs should exhibit both uniform peak energy (energy consistency) and similar spatial
structure across channels (channel consistency).
Energy consistency measures per-channel fluctuations of the central energy around its mean:

𝜇cen =
1
𝐶

𝐶∑︁
𝑐=1

𝐼𝑐,ℎ0,𝑤0 , Lenergy_cst =

1
𝐶

∑𝐶
𝑐=1

��𝐼𝑐,ℎ0,𝑤0 − 𝜇cen
��

𝜇cen + 𝜖
.

Channel consistency enforces that each spectral channel’s PSF shape does not deviate excessively from its own
spectral channel mean:

𝐼ℎ,𝑤 =
1
𝐶

𝐶∑︁
𝑐=1

𝐼𝑐,ℎ,𝑤, Lchannel_cst =

∑𝐻
ℎ=1

∑𝑊
𝑤=1

��𝐼ℎ,𝑤 − 𝐼𝑐,ℎ,𝑤
��∑𝐻

ℎ=1
∑𝑊

𝑤=1 𝐼ℎ,𝑤 + 𝜖
.

The combined consistency loss is
Lcst = Lenergy_cst + Lchannel_cst .

4. Total-Energy Loss. We also maximize the overall PSF energy to prevent trivial zero solutions:

𝐼 =
1

𝐶 𝐻𝑊

∑︁
𝑐,ℎ,𝑤

𝐼𝑐,ℎ,𝑤, Lenergy = − ln
(
𝐼 + 𝜖

)
.

B.4 Additional RAW Image Processing Details
For single-DOE broadband imaging, we capture RAW images and perform the image reconstruction (deconvolu-
tion) in the linear-RGB space, thus entailing a RAW-to-linear-RGB preprocessing. As in [Brooks et al. 2019], our
RAW-to-linear-RGB conversion comprises four stages: channel packing with level normalization, white-balance
gain computation, bilinear demosaicing, and vignetting correction. Let

𝑌 ∈ {0, . . . , 214 − 1}𝐻×𝑊

be the raw 14-bit Bayer mosaic, with per-channel black levels b = [𝑏𝑅, 𝑏𝐺1 , 𝑏𝐵, 𝑏𝐺2 ]𝑇 and fixed white level
𝑊 = 214. Denote the 2×2 Bayer offsets by (Δ𝑟

𝑐 ,Δ
𝑐
𝑐 ) for 𝑐 ∈ {𝑅,𝐺1, 𝐵,𝐺2}.

1. Channel Packing & Level Normalization. Define

𝑃𝑐 (𝑥,𝑦) =
𝑌 (2𝑥 + Δ𝑟

𝑐 , 2𝑦 + Δ𝑐
𝑐 ) − 𝑏𝑐

𝑊 − 𝑏𝑐
, 𝑐 ∈ {𝑅,𝐺1, 𝐵,𝐺2},

with subsequent clamping to [0, 1]. This yields 𝑃 ∈ [0, 1]4× 𝐻
2 ×𝑊

2 .

2. White-Balance Gain Computation &Application. Let the rawwhite-balance vector bew = [𝑤𝑅, 𝑤𝐺 , 𝑤𝐵, 𝑤𝐺 ]𝑇 ,
normalized to g = w/𝑤𝐺 = [𝑔𝑅, 1, 𝑔𝐵, 1]𝑇 . We form 𝑃𝑐 (𝑥,𝑦) = 𝑔𝑐 𝑃𝑐 (𝑥,𝑦) for each channel 𝑐 .

3. Bilinear Demosaicing. Denote by U{·} the bilinear upsampler from 𝐻
2 × 𝑊

2 to 𝐻 ×𝑊 . Then

𝑅(𝑖, 𝑗) = U{𝑃𝑅}(𝑖, 𝑗), 𝐵(𝑖, 𝑗) = U{𝑃𝐵}(𝑖, 𝑗),

and
𝐺 (𝑖, 𝑗) = 1

2

(
U{𝑃𝐺1 }(𝑖, 𝑗) + U{𝑃𝐺2 }(𝑖, 𝑗)

)
.

Stacking gives the linear RGB tensor

𝑋 (𝑐, 𝑖, 𝑗) ∈ [0, 1], 𝑐 ∈ {𝑅,𝐺, 𝐵}.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.
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4. Vignetting Correction. To correct for lens vignetting, we capture a uniform white reference RAW 𝑌ref and
process it identically to obtain 𝑋ref (𝑐, 𝑖, 𝑗). We then compute a single-channel shading mask

𝑀 (𝑖, 𝑗) =
1
3

∑︁
𝑐∈{𝑅,𝐺,𝐵}

𝑋ref (𝑐, 𝑖, 𝑗),

and divide the target image by this mask:

𝑋corr (𝑐, 𝑖, 𝑗) =
𝑋 (𝑐, 𝑖, 𝑗)

𝑀 (𝑖, 𝑗) + 𝜀
,

where 𝜀 is a small constant to avoid division by zero. Finally, we clamp 𝑋corr to [0, 1] to produce the vignetting-
corrected, linear RGB image 𝑋 (𝑐, 𝑖, 𝑗), which is then passed on to our inverse-filtering step.

B.5 Additional ISP Post-Processing Details
After the inverse filtering, we post-process the resulting restored linear-RGB images into sRGB images with
simple image signal processing (ISP). Given a white-balanced, linear RGB image

𝑋 = 𝑋 (𝑐, 𝑖, 𝑗) ∈ [0, 1]3×𝐻×𝑊 ,

we convert it into display-ready sRGB in three stages: color correction, tone mapping, gamma compression.

1. Color Correction. We apply a camera-to-RGB color correction matrix C ∈ R3×3 to each pixel:

𝑋 (𝑖, 𝑗) = C 𝑋 (𝑖, 𝑗),
where 𝑋 (𝑖, 𝑗) ∈ R3 is the column vector of linear RGB at spatial location (𝑖, 𝑗).

2. Global Tone Mapping. We apply a smoothstep-like curve element-wise to compress highlights:

𝑇 (𝑢) =
1 − sin

(
3 arcsin(0.5 − 𝑢)

)
2

, 𝑢 ∈ [0, 1] .

Thus the tone-mapped image is
𝑌 (𝑖, 𝑗) = 𝑇

(
𝑋 (𝑖, 𝑗)

)
∈ [0, 1]3 .

3. Gamma Compression. To approximate the sRGB transfer, we raise each channel to the power 1/𝛾 :

𝑋 (𝑖, 𝑗) = max
(
𝑌 (𝑖, 𝑗), 𝜀

)1/𝛾
,

with 𝛾 = 2.2 (typical) and small 𝜀 = 10−8 for numerical stability. The result 𝑋 is the sRGB image fed to display or
perceptual evaluation.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.



n • 7

C ADDITIONAL RESULTS AND ANALYSIS

C.1 More Results on Lithography Model Calibration and Evaluation
We provide several extra results related to the lithography model calibration and evaluation, which include

(1) The design layout pattern for contrast curve calibration (Fig. S1), which extends Fig. 4 in the main paper.
(2) More evaluation results on lithography model forward predictability (Fig. S2), which extends Fig. 5 in the

main paper.
(3) Comparison of DOE design approaches (Table S2), which extends Fig. 3 in the main paper. The simulation

computational holographic display results suggest that, of the fabrication-aware models, our approach
outperforms Xu et al. [2025]. The performance of a DOE designed with the Xu’s model drops significantly
(from 31.2 dB to 19.6 dB) when evaluated with our more accurate neural lithography model instead of its
own. This indicates that the simplified physical model of Xu et al. lacks the fidelity to fully capture the
complex fabrication process, limiting its effectiveness as a design surrogate. In contrast, our model achieves
superior performance by providing a more precise representation of the true fabrication kernel both in
simulation and real-world experiments (Fig. S3).

(4) Quantitative comparison of neural lithography models with different upsampling factors (Table S3). While
all models achieve similar PSNR when evaluated at their native resolution, their performance diverges
significantly when evaluated at a fixed, high-resolution (10×) standard. The model trained with only 2×
upsampling suffers a severe performance drop (from 21.8 to 17.4 dB). Performance consistently improves
with higher training upsampling ratios. The 4×model shows acceptable performance (20.1 dB), while the 8×
model performs nearly identically to the 10×model (20.8 dB vs. 20.9 dB), demonstrating that 8× upsampling
is sufficient to accurately capture fine-grained fabrication effects with negligible model mismatch.

Table S2: Comparison of DOEDesignApproaches (extension of Fig.3).We report quantitative evaluations
(PSNR in db) of different diffractive optical element design strategies for creating 2-D hologram (c.f., the
task setting of Fig.3) : conventional (at 2 µm-spacing grid), conventional with nearest upsampling, physical
lithography model of Xu et al. [2025] and our neural lithography model (all at 250-nm-spacing grid). Diagonal
entries show performance when training and evaluation methods match; off-diagonals reveal model-mismatch
assessment.

Eval
Train Conventional Nearest Upsample Xu et al. [2025] Our Approach

Conventional 34.9 14.9 16.0 12.0
Nearest Upsample 16.8 39.2 20.7 14.1

Xu et al. 13.5 15.0 31.2 17.9
Our Approach 12.4 12.9 19.6 21.9

Table S3: Comparison of Neural Lithography Models with Different Upsampling Ratios.We report
2-D hologram reconstruction quality (PSNR in dB) for models trained with different upsampling factors. The
first row shows performance when models are evaluated using their native (same) upsampling ratio. The
second row shows performance when all models are evaluated using a fixed 10× upsampling ratio.

Eval
Train 2× Upsample 4× Upsample 8× Upsample 10× Upsample

Same 21.8 21.8 21.9 20.9
10× Upsample 17.4 20.1 20.8 20.9

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.



8 • Wei, K. et al

Fig. S1: Contrast Curve Calibration (extension of Fig.4). A 7×7 test pattern of uniform patches with
incrementally varying gray values (1 to 1023, specified below each patch) is used to measure and plot a contrast
curve, showing the relationship between gray values and developed resist depths.

C.2 Additional Experimental Results on Broadband Imaging
We provide additional comparison on raw measurements and inverse-filtered reconstructions to demonstrate the
effectiveness of our fabrication-aware approach.
Figure S4 presents the raw measurements for the reference target (Column 1), a Fresnel DOE with analytical

quadratic phase at 𝜆0 = 550 nm (Column 2), the conventional nearest-upsampling DOE (Column 3), and our
fabrication-aware neural-upsampling DOE optimized via the broadband PSF loss (Column 4). The analytical
quadratic phase is defined as:

𝜙quad (𝑥,𝑦) =
𝜋

𝜆0 𝑓

(
𝑥2 + 𝑦2), 𝜆0 = 550 nm,

Though the Fresnel DOE in Column 2 appears sharper at first glance, it exhibits pronounced chromatic
aberration that varies with the scene’s spectral distribution (compare Rows 1 and 2). This inconsistency forces
reconstruction algorithms to rely heavily on cross-channel priors [Heide et al. 2013], undermining robustness. In
contrast, DOEs optimized with our broadband PSF loss are engineered to produce spectrally invariant point-spread

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.
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Design
Layout

Physical
[Xu et al. 2025]

Neural
(Ours)

AFM
Measurement

Fig. S2: Lithography Model Forward Predictability (extension of Fig.5). We show design patterns
from the constructed evaluation set, their corresponding AFM measurements, and the predictions from two
lithography models: a physical model [Xu et al. 2025] and our proposed neural lithography model.

functions, effectively eliminating strong color fringing across the visible band. Crucially, real-world measurements
(Column 4 of Fig. S4) demonstrate that the fabrication-aware neural upsampling design delivers higher spatial
resolution and significantly reduced chromatic aberration compared to the conventional nearest-upsampling DOE
(Column 3). This performance gap between simulated design and fabricated device highlights the importance of
incorporating fabrication and broadband effects into the optimization.

Next, we present additional inverse-filtering results (see Sec. 5.4). The new captured scenes further confirm that
our fabrication-aware DOE produces measured PSFs nearly identical to those predicted in simulation.We highlight
the scene in Row 2 of Fig. S5 to demonstrate how residual chromatic aberration—stemming from imperfect
fabrication modeling—induces pronounced ringing artifacts in the downstream non-blind reconstruction.

Finally, we experimentally measured the PSFs of both the conventional nearest-neighbor upsampling DOE and
the proposed fabrication-aware DOE. To validate the accuracy of our lithography model, we performed inverse

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.
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Xu et al. [2025] Our Approach
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Fig. S3: Experimental Comparisons on Computational Holographic Display. We present captured 2-D
holograms from both Xu et al.’s method [Xu et al. 2025] and our approach (both optimized with 8× upsampling
on a 250-nm-spacing grid). Compared to the linear physical model used by Xu et al., our method produces
cleaner textures with fewer speckle artifacts.

Fig. S4: Raw Measurement Comparisons of broadband imaging DOEs. The classic Fresnel DOE yields
sharper images but exhibits significant scene-dependent chromatic aberration (e.g., purple artifacts), challenging
to correct algorithmically.

filtering using both the experimentally measured PSFs and their simulated counterparts. If the deconvolution
results obtained from the same measurement closely match when using simulated and experimental PSFs, this
indicates that the predicted PSF reliably approximates the measured one. The results in Fig. S6 confirm this
alignment, demonstrating the effectiveness of the proposed fabrication-aware model. This is consistent with the
modulation transfer functions corresponding to both the simulated and experimental PSFs in Fig. S7.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.
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Fig. S5: Experimental Validation of Broadband Imaging Performance. Inverse deconvolution results
from additional captured scenes verify close agreement betweenmeasured and simulated point spread functions
using our fabrication-aware DOE design. Representative results (Row 2) reveal residual chromatic artifacts
arising from fabrication errors, manifesting as ringing artifacts post-deconvolution as for the conventional
design.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.
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Fig. S6: Comparison of Inverse Filtering with Simulated and Experimental PSFs. Deconvolution results
obtained using both measured and simulated PSFs for the conventional nearest-neighbor upsampling DOE
and the proposed fabrication-aware DOE. The close agreement between results validates that the simulated
PSFs reliably approximate the de facto ones, demonstrating the accuracy of the proposed lithography model.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.
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Fig. S7: Simulated vs. Experimental MTF. A comparison of the modulation transfer function (log scale)
from the fabrication-aware simulation and the experimental measurement based on the captured PSF.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.
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EF to C-Mount adapter

C-Mount to SM1 adapter

Telescopic lens tube

DOE
DOE holder

EF to C-Mount adapter

C-Mount to SM1 adapter

Iris

SM1 to SM2 adapter

SM2 lens tube

Achromatic lens, f = 80 mm,
Thorlabs AC50-080-A

+

Fig. S8: Experimental Assemblies for assessing the performance of diffractive optical elements in broadband
imaging applications.

D ADDITIONAL EXPERIMENTAL PROTOTYPE DETAILS

D.1 Broadband Imaging Setup
Fig. S8 depicts the assemblies adapted for broadband imaging evaluation, designed to capture visually similar
scenes. To mount the fabricated DOEs, we used telescopic lens tubes (Thorlabs SM1NR1), which enabled precise
positioning at the correct focal distance. The DOEs were attached to custom acrylic holders, 2.8mm thick, cut
using a laser cutter and designed with sufficient clearance to accommodate the square-shaped elements. For
reference imaging, we used an achromatic lens with a focal length of 𝑓 = 80 mm, in combination with an iris
aperture set to 2 mm. The capturing device was a full-frame Canon camera (EOS 5D Mark IV), and the data were
recorded in CR2 RAW format.
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